

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кемеровский государственный медицинский университет» Министерства здравоохранения Российской Федерации

УТВЕРЖДАЮ Заведующий кафедрой медицинской биохимии д.м.н., профессор О.В. Груздева

(подпись)

«30» августа 2025 г.

СПИСОК ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ЗАЧЕТУ

дисциплины «Биохимия»

для студентов лечебного факультета BCO очно-заочной формы III семестр 2025-2026 учебного года

1. БЕЛКИ. ФЕРМЕНТЫ

- 1. Белки: определение, общая характеристика, биологическая роль. Физико-химические свойства, условия осаждения белков из растворов, денатурация. Использование этих свойств белков в клинической и лабораторной практике.
- 2. Современные представления о структурной организации белков. Особенности формирования первичной структуры, строение и свойства пептидной связи. Видовая специфичность и полиморфизм белков.
- 3. Конформация белковых молекул: вторичная и третичная структура, разновидности, связи их стабилизирующие.
- 4. Четвертичная структура: общая характеристика, типы стабилизирующих её связей, кооперативные эффекты, биологические преимущества по сравнению с белками более низкой структурной организации (на примере гемоглобина и миоглобина).
- 5. Классификация простых и сложных белков. Характеристика свойств и биологическая роль белков отдельных классов.
- 6. Хромопротеины. Гемоглобин: строение, структура гема, биологическая роль. Наследственные гемоглобинопатии (серповидноклеточная анемия).
- 7. Цветные реакции на аминокислоты и белки, применение их в клиниколабораторных исследованиях.
- 8. Ферменты: определение, краткая характеристика, отличия от небиологических катализаторов. Кинетические свойства ферментов: зависимость скорости реакций от концентрации субстрата и фермента, от температуры и рН среды.
- 9. Строение ферментов. Активный центр: определение, структурная организация, роль. Простые и сложные ферменты. Кофакторы. Апо- и коферменты, простетические группы. Коферментные функции витаминов B_1 , B_2 , пантотеновой кислоты, PP, B_6 .
- 10. Современные представления о механизме действия ферментов. Стадии ферментативного катализа. Роль конформационных изменений при катализе.
- 11. Мультиферментные комплексы: особенности строения и участия в катализе, биологическое значение, примеры. Тканевая и органная специфичность ферментов. Изоферменты: определение, общая характеристика. Энзимодиагностика и энзимотерапия, применение ингибиторов ферментов в медицинской практике.
- 12. Классификация и номенклатура ферментов. Характеристика классов и основных подклассов ферментов (с примерами реакций): оксидоредуктазы, трансферазы, гидролазы, лиазы (синтазы), изомеразы, лигазы (синтетазы).

2. ВИТАМИНЫ, БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ, ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ И ОБЩИЕ ПУТИ КАТАБОЛИЗМА

13. Витамины: определение, общая характеристика, классификация, биологические функции. Гипо-, а- и гипервитаминозы: определение, причины развития, признаки,

- принципы профилактики и лечения. Потребности в витаминах у детей в разные возрастные периоды Провитамины и антивитамины: определение, краткая характеристика отдельных представителей, биологическая роль.
- 14. Витамин А: химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминоза. β-каротин: строение, роль.
- 15. Витамины группы К: общая характеристика, химическая структура, биологическая роль, признаки гиповитаминоза.
- 16. Витамины группы Е: Общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминозов.
- 17. Витамины группы Д: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминозов. Пути образования метаболически активных форм витамина Д и участие их в регуляции минерального обмена.
- 18. Витамин B_1 : общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза. Нарушения углеводного обмена при недостатке витамина B_1 .
- 19. Витамин В₂: общая характеристика, химическое строение, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 20. Витамин РР: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 21. Пантотеновая кислота: общая характеристика, химическая структура, биологическая роль.
- 22. Витамин В₆: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 23. Витамин В₉ (фолиевая кислота): общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза. Механизм действия сульфаниламидных препаратов.
- 24. Витамин B_{12} : общая характеристика, особенности химического строения биологическая роль, суточная потребность, признаки гиповитаминоза.
- 25. Витамины С и Р: общая характеристика, химическое строение, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 26. Витамин Н (биотин): общая характеристика, химическое строение, биологическая роль.
- 27. Гормоны: определение, общая характеристика, классификация. Отличительные черты истинных и тканевых гормонов. Место гормонов в системе регуляции жизнедеятельности организма.
- 28. Механизм действия гормонов. Механизм передачи сигнала в клетку для гормонов, не проникающих в неё; вторые посредники и их роль в этом процессе.
- 29. Роль пищи в жизнедеятельности и сохранении здоровья человека. Метаболизм: определение, общая характеристика, составные части, метаболические пути. Катаболизм и анаболизм, их взаимосвязь.
- 30. Общие и специфические метаболические пути. Центральные метаболиты и ключевые ферменты.
- 31. Окислительное декарбоксилирование пирувата: внутриклеточная локализация процесса, ферменты и коферменты, последовательность и химизм реакций, биологическая роль, энергетический эффект.
- 32. Ацетил-КоА: химическое строение, место в процессах метаболизма, пути образования и использования в организме.
- 33. Цикл трикарбоновых кислот (ЦТК): общая характеристика, место в обмене веществ и энергии, внутриклеточная локализация, последовательность и химизм реакций, характеристика ферментов, связь с дыхательной цепью, биологические функции. Механизмы регуляции цитратного цикла.
- 34. Современные представления о биологическом окислении. Конечный акцептор электронов и протонов у млекопитающих. Виды и способы биологического

- окисления. Общая схема транспорта электронов и протонов от окисляемых субстратов на кислород.
- 35. АТФ: химическая структура, биологическая роль, цикл АТФ-АДФ, основные способы фосфорилирования АДФ, их отличительные черты.
- 36. Окислительное фосфорилирование: определение, общая характеристика, внутриклеточная локализация процесса, механизм, биологическая роль.

3. ОБМЕН УГЛЕВОДОВ

- 37. Углеводы: определение, классификация, химическое строение, биологическая роль.
- 38. Углеводы пищи: общая характеристика, суточная потребность, биологическое значение, химическое строение отдельных представителей моно-, ди- и гомополисахаридов. Переваривание и всасывание углеводов в пищеварительном тракте. Особенности переваривания и усвоения углеводов у детей.
- 39. Физиологически важные гетерополисахариды (гиалуроновая кислота, хондроитинсульфаты, гепарин): строение, роль.
- 40. Глюкоза как основной метаболит углеводного обмена. Гексокиназная реакция: внутриклеточная и тканевая локализация, химизм, биологическое значение. Пути образования и использования глюкозо-6-фосфата.
- 41. Гликолиз: определение, внутриклеточная локализация процесса, последовательность и химизм реакций, необратимые этапы и ключевые ферменты, конечные продукты и их дальнейшая судьба в аэробных и анаэробных условиях.
- 42. Полное окисление глюкозы в аэробных условиях дихотомический (непрямой) путь обмена глюкозы: характеристика и локализация отдельных этапов, энергетический эффект, биологическая роль, регуляция.
- 43. Гликолитическая оксидоредукция: определение, химизм, биологическое значение. Челночные механизмы. Роль аэробного и "анаэробного" распада глюкозы в мышцах. Образование и дальнейшая судьба молочной кислоты.
- 44. Прямой путь окисления глюкозы (пентозофосфатный цикл ПФЦ, гексозо-монофосфатный шунт): внутриклеточная локализация, стадии, последовательность и химизм реакций до образования фосфопентоз, далее схематично, биологическое значение, взаимосвязь с гликолизом.
- 45. Глюконеогенез: определение, внутриклеточная локализация, исходные субстраты, пути их образования, последовательность реакций и химизм ключевых реакций, биологическая роль, регуляция путей распада глюкозы и глюконеогенеза.
- 46. Гликоген: строение, биологическая роль. Биосинтез и распад гликогена в печени и мышцах: последовательность и химизм реакций, ферменты, конечные продукты и их дальнейшая судьба.
- 47. Регуляция биосинтеза и распада гликогена в печени и мышцах.
- 48. Особенности обмена глюкозы в разных клетках и тканях (эритроциты, мозг, мышцы, жировая ткань, печень).
- 49. Сахарный диабет: определение, общая характеристика, нарушения обмена веществ. Клинико-лабораторная диагностика сахарного диабета.
- 50. Диабетические комы: определение, классификация, лабораторная диагностика, биохимические механизмы развития, биохимические принципы профилактики и лечения.
- 51. Глюкоза крови: источники и пути использования, концентрация. Механизмы поддержания постоянного уровня глюкоземии. Гипо- и гипергликемия, глюкозурия: определение, механизмы развития, болезни, при которых они развиваются. Принцип метода и клинико-диагностическое значение определения концентрации глюкозы в крови и моче.

4. ОБМЕН ЛИПИДОВ

52. Липиды: определение, общая характеристика, классификация, химическая структура, биологическая роль.

- 53. Пищевые жиры: общая характеристика, классификация, химическое строение, суточные нормы потребления (животных и растительных жиров), биологическая роль.
- 54. Переваривание и всасывание продуктов переваривания триацилглицеролов (жиров). Роль желчных кислот в этом процессе. Особенности переваривания жиров у детей. Особенности переваривания и всасывания жиров, содержащих коротко- и среднецепочечные жирные кислоты.
- 55. Желчные кислоты: происхождение, классификация, химическое строение биологические функции. Печёночно-кишечная циркуляция желчных кислот биологическое значение и последствия нарушения.
- 56. Ресинтез триацилглицеролов в слизистой кишечника: исходные субстраты и их источники, первичные акцепторы ацильных остатков, последовательность и химизм реакций, ферменты и коферменты, биологическая роль.
- 57. Транспортные липопротеины крови: место образования, особенности состава, строения, обмена и функций разных липопротеинов.
- 58. Депонирование и мобилизация жиров в жировой ткани: исходные субстраты и конечные продукты, последовательность и химизм реакций, регуляция, биологическая роль.
- 59. Транспорт и использование жирных кислот и глицерола, образующихся при мобилизации жиров в жировой ткани.
- 60. Жировая инфильтрация печени: определение, механизмы развития, биохимические принципы профилактики и лечения.
- 61. Холестерол: строение, потребность, биологическая роль. Биосинтез холестерола: внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, основные этапы, химизм реакций до образования мевалоновой кислоты, представления о дальнейших этапах, регуляция.
- 62. Гиперхолестеролемия: определение, причины развития, медико-биологическое значение. Атеросклероз и желчнокаменная болезнь: биохимические основы развития, профилактики и лечения.
- 63. Кетоновые тела: общая характеристика, химическое строение, содержание в крови и моче, биологическая роль. Биосинтез и использование кетоновых тел: внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, химизм реакций. Кетогенез при патологии.
- 64. Регуляция липидного обмена.

5. ОБМЕН АМИНОКИСЛОТ, НУКЛЕОТИДОВ. МАТРИЧНЫЕ СИНТЕЗЫ

- 65. Основные функции аминокислот и белков в организме. Суточная потребность в белках. Биологическая ценность пищевых белков. Азотистый баланс.
- 66. Переваривание и всасывание продуктов переваривания белков. Гниение аминокислот в кишечнике и пути обезвреживания токсических продуктов.
- 67. Трансаминирование: определение, общая характеристика, внутриклеточная локализация, ферменты и коферменты, механизм, биологическая роль. Специфичность трансаминаз. Клинико-диагностическое значение определения активности трансаминаз в плазме.
- 68. Пути образования, обезвреживания и использования аммиака в организме.
- 69. Биосинтез мочевины: общая характеристика, внутриклеточная и тканевая локализация, источники аминогрупп, последовательность и химизм реакций, связь с ЦТК, нарушения синтеза и выведения мочевины.
- 70. Принцип метода и клинико-диагностическое значение определения содержания мочевины в плазме и моче.
- 71. Декарбоксилирование аминокислот: общая характеристика, механизм, ферменты и коферменты, биологическое значение. Биогенные амины: образование и инактивация, структурные формулы и биологические функции отдельных представителей.

- 72. Глутамин: роль в обмене аммиака, биосинтезе азотсодержащих соединений. Образование и выведение солей аммония, биологическое значение при ацидозе.
- 73. Нуклеотидный пул клеток, пути его пополнения и расходования.
- 74. ДНК: строение, биологическая роль. Биосинтез РНК (транскрипция).
- 75. Генетический код, его характеристика.
- 76. т-РНК: особенности состава, строения, адапторная функция в биосинтезе белков. Образование аминоацил-т-РНК: общая характеристика, химизм реакций, ферменты, физиологическая роль.
- 77. Биосинтез белков (трансляция): определение, внутриклеточная локализация, основные компоненты белоксинтетической системы, фазы трансляции, химизм реакций при биосинтезе полипептидной цепи.
- 78. Регуляция процесса биосинтеза белка.